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Abstract

In the piezoceramic actuators, the d15 effect is very attractive for the applications, as the shear
piezoelectric coefficient d15 is higher than d31 and d33: The potential use of the d15 effect of piezoceramics
near the resonant frequency excitation, such as in ultrasonic motors and torsional actuators, has led to the
close investigation of their behavior. At weak electric fields, the piezoceramics are usually described by
linear constitutive relations. However, typical nonlinear effects such as softening behavior were observed in
resonantly driven piezoceramic beams, which cannot be adequately defined by linear theories. In this paper,
this nonlinear behavior has been modeled using higher-order cubic conservative and nonconservative terms
in the constitutive equations. Series comprising orthogonal polynomial functions, generated using the
Gram–Schmidt method, are used in the Rayleigh–Ritz method to formulate the linear eigenvalue problem.
The linear eigenfunctions are used as shape functions to discretize the nonlinear equation of motion
obtained by Hamilton’s principle. The approximate solution of the nonlinear equation of motion is
obtained using the perturbation method. Using this solution, nonlinear parameters are identified by
comparing the theoretical and experimental results. The nonlinear effects and the modeling technique
described herein may help in optimizing the existing applications and developing new applications based on
the d15 effect.
r 2004 Elsevier Ltd. All rights reserved.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Fig. 1 shows a cantilever piezoceramic beam. The beam is polarized in the x3-direction and the
electric field is applied in the x1-direction. The applied electric field induces flexural vibrations of
the piezoceramic beam in the x1x3-plane due to d15-effect. In the experiments the piezoceramic
beam is excited near the first flexural resonance frequency at different excitation voltages. The tip
displacement uðh=2; l=2Þ is measured with the help of a laser vibrometer. The experimental results
obtained by exciting a piezoceramic beam (PIC 255 manufactured by PI Ceramic at Lederhose,
Germany) of the dimensions 18� 14� 8mm3 ðl � b � hÞ are shown in Fig. 2. Typical nonlinear
characteristics such as the dependence of the resonance frequency on the excitation voltage and a
decrease in the normalized amplitude with increase in excitation voltage can be observed here.
In the present study, the nonlinear behavior of piezoceramics exhibited in the presence of weak

electric field is studied. In contrast, the nonlinear behavior of piezoceramics in the presence of a
strong electric field is a well-known phenomenon. Dielectric hysteresis and butterfly hysteresis are
typical examples [1] of such behavior. Nonlinear behavior of the piezoceramics subjected to weak
electric fields was investigated by Beige and Schmidt [2]. They observed typical nonlinear
vibration behavior during an investigation of longitudinal vibrations of piezoceramics using d31

effect. Drögmöller and Gerlach [3] studied the jump phenomenon of current in piezoceramics,
they attributed it to the nonlinear influence of the surrounding media. Jiang and Cao [4]
investigated nonlinear properties of PZT piezoceramics. Mueller and Zhang [5] examined the
nonlinear shear response of nonresonant excitation of PZT piezoceramics. Equivalent nonlinear
effects as described by Beige and Schmidt were also found by Parashar and von Wagner [6,7] in
the d31 effect, by von Wagner [8] in the d33 effect and by Parashar et al. [9,10] in d15 effect.
The use of the d15 effect is of particular interest as the shear piezoelectric coefficient is much

higher than the other piezoelectric coefficients d31 and d33: In the past few years, the interest in
shear actuators has increased continuously. In particular, the applications of shear actuators to
induce and control (smart structures) the flexural vibrations of beams and plates has been
addressed quite frequently in the literature. Sun and Zhang [11] studied the effect of the actuator
length and location on the actuation performance of an adaptive sandwich structure using the
shear mode of piezoelectric material. Later [12], they presented formulation for an adaptive
sandwich beam containing shear actuator by modeling the facing sheets as Euler–Bernoulli beam
and central core as a Timoshenko beam. However, due to the complexity of the obtained
electromechanical equations, the analysis was limited to a static case. This work was extended in
Ref. [13] for the analysis of a sandwich plate based on the shear mode of piezoelectric material.
The assumptions similar to the first-order shear deformation theory were used and Rayleigh–Ritz
method was used to find the approximate solution. Benjeddou et al. [14] presented a unified beam
l
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Fig. 1. x3-axis polarized piezoceramic beam.
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Fig. 2. Experimental normalized displacement response close to the first flexural resonance of piezoceramic cantilever

beam at various excitation voltages (electric field strengths): — 2V (0.25V/mm); ��� 15V (1.875V/mm); � � � � �

30V (3.75V/mm); � � � � � � 60V (7.5V/mm).
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finite element model for extension and shear piezoelectric actuation mechanisms. Trindade et al.
[15] demonstrated that shear actuators can be more effective than thickness poled actuators for
the control of bending vibrations. Aldraihem and Khdeir [16] investigated the feasibility of using
shear-mode actuators in smart beams. They presented comparison of the analytical models based
on first-order beam theory and higher-order beam theory. Vel and Batra [17] gave an exact
solution for the static bending of a simply supported sandwich plate with an embedded
piezoelectric shear actuator and compared the results with the one obtained from first-order shear
deformation theory. In another effort [18], they provided an exact three-dimensional state space
solution for the static cylindrical bending of simply supported laminated plates with embedded
shear mode piezoelectric actuators.
Some new devices utilizing the d15 effect of the piezoceramics have also been reported in the

literature. Glazounov et al. [19,20] introduced two novel devices, namely a torsional actuator and
a torsional stepper motor based on piezoelectric d15 shear response. Kim and Kang [21] presented
the design, test and improvement of the newly developed piezoelectric torsional actuator. A
piezoelectric shear–shear mode ultrasonic motor based on the d15 effect is also proposed by Dong
et al. [22].
Many of these applications, in particular ultrasonic motors, torsional actuators and some smart

structures, discussed above utilize the piezoceramics near resonance frequency excitation.
However, all of these published studies on shear actuators were restricted to a linear description of
the piezoceramic behavior. The nonlinear effects observed in Fig. 2 are significant, and if ignored
can cause an error up to 100% in the prediction of the amplitude and a large error in the
prediction of the resonance frequencies. Hence, an efficient design of a device, utilizing the d15

effect, demands a detailed investigation of the observed nonlinear behavior. Parashar et al. [9]
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investigated the nonlinear shear vibration of a free piezoceramic rectangular parallelepiped (with
aspect ratio close to unity) at weak electric fields. They presented a simplified two-dimensional
theory which takes into account only the shear stress in the structure. In the present paper, this
work is extended to incorporate the normal stresses necessary for explaining the flexural
vibrations of the piezoceramics. A detailed investigation of nonlinear shear-induced flexural
vibration of piezoceramic beams, and a complete mathematical modeling of this nonlinear
behavior, is believed to have not been reported in the literature before.
2. Linear modeling

In this section, first a reduced set of linear constitutive relations is obtained for the piezoceramic
beam. Then, various energy expressions are obtained to be used in Hamilton’s principle and in the
Rayleigh–Ritz method. The field equations along with the boundary conditions are obtained
using Hamilton’s principle. As no closed-form solution is known for the obtained field equations,
the Rayleigh–Ritz method is used to obtain eigenfunctions and eigenfrequencies of the system.
The eigenfunctions thus obtained are used in the next section to discretize the nonlinear equation
of motion in the Ritz method.
2.1. Linear constitutive equations

Under the assumption of plane stress (i.e. T2 ¼ T4 ¼ T6 ¼ 0) and neglecting the electric field
E2 in the transverse direction x2; the linear constitutive equations for the piezoceramic beam can
be written as [23]

T1 ¼ c11S1 þ c13S3 � e31E3; ð1Þ

T3 ¼ c13S1 þ c33S3 � e33E3; ð2Þ

T5 ¼ cE
44S5 � e15E1; ð3Þ

D1 ¼ eS
11E1 þ e15S5; ð4Þ

D3 ¼ e33E3 þ e31S1 þ e33S3 ð5Þ

with

c11 ¼ cE
11 � cE2

12=cE
11

� �
; c13 ¼ cE

13 � cE
12c

E
13=cE

11

� �
; c33 ¼ cE

33 � cE2

13=cE
11

� �
;

e31 ¼ e31 � cE
12e31=cE

11

� �
; e33 ¼ e33 � cE

13e31=cE
11

� �
; e33 ¼ eS

33 þ e231=cE
11

� �
:

Here, Sp (p ¼ 1; 2; 3Þ are the normal strains, while Sp ðp ¼ 4; 5; 6Þ are the shear strains. Di are the
dielectric displacements and Ei are the corresponding electric fields. cE

ij are the stiffness
coefficients, eij piezoelectric coefficients and eS

11; e
S
33 denote the dielectric constants measured at

constant strain. An overbar denotes a modified value of the material constant. In the present
paper, the compressed notation from the IEEE standards for piezoceramic materials [24] has been
used.
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2.2. Linear field equations

The kinematic relations between the strain S and the displacements uðx1; x3; tÞ and wðx1; x3; tÞ in
x1 and x3 directions, respectively, are given by

S1 ¼ u;1; S3 ¼ w;3 and S5 ¼ u;3 þ w;1: (6)

Here the numbers (1,2,3) following the comma indicate differentiation with respect to ðx1;;x2; x3Þ;
respectively (e.g. u;3 ¼ qu=qx3). The electric field E in terms of the electric potential jðx1; x3; tÞ is
given by

E1 ¼ �j;1 and E3 ¼ �j;3: (7)

The field equations can be derived using Hamilton’s principle [23], which for a piezoelectric
continuum is

d
Z t1

t0

Ldt þ

Z t1

t0

dW dt ¼ 0; (8)

with the Lagrangian

L ¼

Z
V

ðT � HÞdV ; (9)

where T denotes the kinetic energy density, H the electric enthalpy density, dW the virtual work
and V the volume. However, the term H consists of purely mechanical, purely electrical and
coupling terms but still it is termed as electric enthalpy density. The name electric enthalpy density
was perhaps coined by Mason [25] and later it became standard in piezoceramic literature (e.g.
IEEE standards [24]). In the conservative case, the electric enthalpy density H is defined through

Tp ¼
qH

qSp

and Di ¼ �
qH

qEi

: (10)

Using Eqs. (1)–(5) and (10), the electric enthalpy density can be expressed as

H ¼ 1
2

c11S
2
1 þ

1
2

c33S
2
3 þ

1
2

cE
44S

2
5 þ c13S1S3 � e31S1E3

� e33S3E3 � e15S5E1 �
1
2
eS
11E

2
1 �

1
2
e33E2

3: ð11Þ

The kinetic energy is given by Z
V

TdV ¼ 1
2
r
Z

V

ð _u2 þ _w2ÞdV ; (12)

where r is the density of the piezoceramic and a dot represents differentiation with respect to
time t:
Energy terms are substituted in Hamilton’s principle (8). Variation is performed with respect to

du; dw and dj and integration by parts is used. Collection of various terms in the integral signs
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corresponding to the du; dw and dj leads to the linear field equations

r €u ¼ c11u;11 þ cE
44u;33 þ c13 þ cE

44

� �
w;13 þ ðe31 þ e15Þj;13; ð13Þ

r €w ¼ c33w;33 þ cE
44w;11 þ c13 þ cE

44

� �
u;13 þ e33j;33 þ e15j;11; ð14Þ

eS
11j;11 þ e33j;33 ¼ ðe31 þ e15Þu;13 þ e15w;33 þ e33w;33; ð15Þ

with the corresponding boundary conditions (i.e. for clamped-free case u ¼ w ¼ 0 at x3 ¼ �l=2
and traction-free boundary conditions at all the free edges). The piezoceramic beam is used as an
actuator and an external electric field is prescribed at the boundaries with electrodes (i.e. at
x1 ¼ �h=2; h=2). It is appropriate here to assume that the electric potential in the piezoceramic
vanishes at these boundaries [23]. Hence, electrodes are considered to be short-circuited in the
present case (i.e. j ¼ 0 at x1 ¼ �h=2; h=2). For the un-electroded sides of the piezoceramic beam
(i.e. at x3 ¼ �l=2; l=2), as the dielectric constant of the air is negligible in comparison to the
dielectric constant of the piezoceramic material, the surface charge density is assumed to be zero
[24]. In the case when piezoceramic is used as sensor, an open-circuit assumption is more
appropriate for the electroded surfaces. For the field equations (13)–(15) with the given boundary
conditions, no closed-form solution is known.
2.3. Rayleigh–Ritz method

Bhat [26] proposed the use of orthogonal polynomials in the Rayleigh–Ritz method to obtain
the natural frequencies of rectangular plates with free edges. The first member of each set of
polynomials is constructed to satisfy the appropriate equivalent beam boundary conditions. The
higher orthogonal members of these polynomials are generated using the Gram–Schmidt process
and automatically satisfy the geometric boundary conditions. It is observed that the higher
members of the set do not satisfy the natural boundary conditions of the equivalent beam, thereby
relaxing the over-restraint encountered in the use of true beam functions. Dickinson and Di Blasio
[27] proposed even lower starting members as compared to those by Bhat. It is observed by
Oosterhout et al. [28] that in the Rayleigh–Ritz method the orthogonalization of the polynomials
by the Gram–Schmidt process results in a numerically stable process. It leads to high convergence
rates and accurate solutions for the higher modes. In the present work, the above-mentioned
method is extended for a piezoelectric continuum.
Assuming u; w and j as

uðx1;x3; tÞ ¼ Uðx1;x3Þ sin ot; ð16Þ

wðx1;x3; tÞ ¼ W ðx1;x3Þ sin ot; ð17Þ

jðx1;x3; tÞ ¼ Fðx1; x3Þ sin ot ð18Þ

and using Eqs. (6), (7) and (11), the maximum electric enthalpy can be expressed as

Hmax ¼
1
2

b

Z
A

c11U
2
;1 þ c33W

2
;3 þ cE

44U
2
;3 þ cE

44W
2
;1 þ 2c13U ;1W ;3 þ 2e31U ;1F;3

�
þ2e33W ;3F;3 þ 2e15U ;3F;1 þ 2e15W ;1F;1 þ 2cE

44U ;3W ;1 � eS
11F

2
;1 � e33F2

;3

�
dA: ð19Þ
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Here, o is the circular frequency and A indicates the integration domain over the area l � h (i.e.
from �l=2 to l=2 and �h=2 to h=2). Similarly, from Eq. (12), the maximum kinetic energy is

Tmax ¼
1
2
rbo2

Z
A

ðU2 þ W 2ÞdA: (20)

For the free vibrations of the piezoceramic the displacement amplitudes U and W may be
expressed as

U ¼ fG1ðx1;x3Þg
TfAgðiþ1Þð jþ1Þ�1; W ¼ fG2ðx1;x3Þg

TfBgðmþ1Þðnþ1Þ�1 (21)

and the electric potential F may be expressed as

F ¼ fG3ðx1;x3Þg
TfCgðrþ1Þðsþ1Þ�1; (22)

where fAg; fBg;fCg are the unknown coefficient vectors and

fG1gðiþ1Þð jþ1Þ�1 ¼ ðfbgfggTÞS;

fG2gðmþ1Þðnþ1Þ�1 ¼ ðfdgfzgTÞS;

fG3gðrþ1Þðsþ1Þ�1 ¼ ðfygffgTÞS ð23Þ

with

fbðx1Þg ¼ ½b0; b1; . . . ;bi�
T;

fgðx3Þg ¼ ½g0; g1; . . . ; gj�
T;

fdðx1Þg ¼ ½d0; d1; . . . ; dm�
T;

fzðx3Þg ¼ ½z0; z1; . . . ; zn�
T;

fyðx1Þg ¼ ½y0; y1; . . . ; yr�
T;

ffðx3Þg ¼ ½f0;f1; . . . ;fs�
T: ð24Þ

The biðx1Þ; gjðx3Þ; dmðx1Þ; znðx3Þ; yrðx1Þ and fsðx3Þ are appropriate polynomial functions
(i; j;m; n; r; s ¼ 0; 1; 2; . . .) satisfying the geometric boundary conditions. Starting functions for
each of these terms, and the Gram–Schmidt process [26] to obtain the higher-order functions are
given in Appendix A. The stacks operator ð:ÞS maps an ði þ 1Þ � ð j þ 1Þ matrix into an ði þ

1Þð j þ 1Þ � 1 column vector. The stack of the matrix is a column vector formed by stacking the
columns of the matrix [29] .
Substituting the expression for U ;W ;F from Eqs. (21) and (22) in the maximum kinetic energy

(20) and the maximum potential energy (19) (the resultant form is shown in Appendix B), and
differentiating it with respect to the unknown coefficients fAg; fBg; fCg provide

qTmax

qcoeff

� �
¼ rbo2

Z
A

fG1gfG1g
T

fG2gfG2g
T

½zeros�

2
64

3
75

0
B@

1
CAdA

A

B

C

8><
>:

9>=
>; (25)

and

qHmax

qcoeff

� �
¼ b

Z
A

½Kmech� ½Kpiezo�

½Kpiezo�
T ½Kdielectric�

" # !
dA

A

B

C

8><
>:

9>=
>;: (26)
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Details of the matrices ½Kmech�; ½Kpiezo� and ½Kdielectric� are given in Appendix C. In the resultant
diagonal matrix obtained by differentiating the kinetic energy, the diagonal elements
corresponding to the coefficients fCg are zero. Therefore, before solving the eigenvalue problem,
it is reduced using the Guyan reduction. The reduced eigenvalue problem is obtained as

½½K� � o2½M��
A

B

� �
¼ 0; (27)

where

½K � ¼ b

Z
A

ð½½Kmech� � ½Kpiezo�½Kdielectric�
�1½Kpiezo�

T�ÞdA (28)

and

½M� ¼ rb

Z
A

fG1gfG1g
T

fG2gfG2g
T

" # !
dA: (29)

After calculating the eigenvalues and eigenvectors from the reduced eigenvalue problem,
coefficients fCg are calculated from

fCg ¼ �½Kdielectric�
�1½Kpiezo�

T
A

B

� �
: (30)

2.4. Convergence study

To observe the convergence behavior, the same number of polynomials are taken for all the
terms in both directions (i.e. i ¼ j ¼ m ¼ n ¼ r ¼ s). For the calculation purpose, the material
parameters for the piezoceramic PIC 255 supplied by the manufacturer and displayed in Table 2
are used. Table 1 displays the convergence behavior of the first four flexural natural frequencies
Nk (k ¼ 1–4) of a cantilever piezoceramic beam of 18� 14� 8mm3 dimensions. It can be
observed that the frequencies start to converge very rapidly and sufficient convergence is achieved
by using eight polynomials in both directions. After this, the maximum change in the values of the
Table 1

Convergence study

No. of polynomials N1 ðkHzÞ N2 ðkHzÞ N3 ðkHzÞ N4 ðkHzÞ

3 9.735 39.042 94.755 121.506

4 9.601 37.417 85.595 114.110

5 9.600 37.278 79.020 111.469

6 9.599 37.253 78.560 107.996

7 9.598 37.250 78.450 107.831

8 9.597 37.248 78.440 107.705

9 9.596 37.247 78.437 107.696

10 9.595 37.246 78.435 107.693

11 9.595 37.245 78.434 107.692

12 9.595 37.245 78.433 107.692
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frequencies is less than 0.02%. However, in the present paper ten polynomials are used, till
complete convergence up to three significant digits after the decimal is achieved for the first
natural frequency.

2.5. Mode shapes

The solution of the eigenvalue problem (27) provides the eigenvectors fAg;fBg; which can be
further used in Eq. (30) to obtain the coefficients fCg: Substituting these in Eqs. (21) and (22)
provides the mode shape for the corresponding eigenvalue.
In Fig. 3, the first four flexural modes of the beam are displayed. In the Euler–Bernoulli beam

theory, it is assumed that the straight lines normal to the mid-plane before deformation remain
straight and normal to the mid-plane after deformation. However, in the Timoshenko beam theory
the normality assumption of the Euler–Bernoulli beam theory is relaxed and the straight lines
normal to the mid-plane before deformation are assumed to remain straight after deformation. It
can be observed from Fig. 3 that both the normality and straightness assumptions are defied.
Specially at higher modes, the bending of the lines is more pronounced (Fig. 3(d)). Hence, for very
thick beams neither of the assumptions of these two theories hold at the higher modes.
Fig. 4 shows the distribution of the electric potential F along the thickness h and length l for the

same modes. It can be observed from this figure that the distribution of the electric potential is
Fig. 3. Mode shapes for the 18� 14� 8mm3 test piece. (a) First flexural mode at 9.595 kHz; (b) second flexural mode

at 37.246 kHz; (c) third flexural mode at 78.435 kHz; (d) fourth flexural mode at 107.693 kHz.
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sinusoidal along the thickness direction for all the modes. To further understand the variation of
the displacements U ;W and the distribution of the electric potential F; two-dimensional plots for
the first flexural mode are shown in Figs. 5 and 6. It can be seen from Fig. 5 that the electric
potential Fk is sinusoidal along the thickness direction. The displacement W k is linear and the
displacement Uk has small variation (from 0.97 to 1.00) along the thickness. However, along the
length direction, the variation of the Uk;W k and the distribution of Fk are more involved (Fig. 6).
The same is observed for the other higher modes. It can be noted that for the first mode electric
potential diminishes rapidly along the length direction (Fig. 6(a)). Therefore, sinusoidal nature of
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the electric potential along the thickness is not visible in Fig. 4(a) at the cross sections away from
the fixed end. However, in a normalized plot, such as in Fig. 5(a), its sinusoidal nature can be
easily verified for any cross section along the length of the beam.
For relatively thin beams, Uk may be assumed constant and W k may be taken linear along the

thickness, as assumed in the Timoshenko beam. Hence, the modified Timoshenko beam theory,
which takes into account the sinusoidal distribution of the electric potential in the thickness
direction and a more general distribution along the length direction, will be sufficient for the
analysis of moderately thick beams. To model the vibration of the piezoelectric coupled structures
excited using the d31 effect, Wang and Quek [30] and Liu et al. [31] used the same assumption to
modify the Euler–Bernoulli beam theory and the Mindlin plate theory, respectively. A detailed
analysis of nonlinear shear-induced flexural vibrations of piezoceramic beams using a modified
Timoshenko beam theory and its comparison with the present work will be the subject of a future
publication.
3. Nonlinear modeling

In order to model the nonlinear behavior observed in the experiments, the corresponding
nonlinear constitutive relations are obtained in this section. Hamilton’s principle together with the
Ritz method are used to obtain a discretized equation of motion for a piezoceramic beam. The
equation of motion is solved using perturbation analysis.

3.1. Nonlinear constitutive equations

In the experiments, when the piezoceramics are excited at one-third of the first resonance
frequency, a superharmonic was observed at resonance frequency, revealing the presence of cubic
nonlinearities. A similar experiment performed at one-half of the first resonance frequency
showed the presence of quadratic nonlinearities of comparable order of magnitude. However,
Parashar and von Wagner [6] and von Wagner [32] found that: based on experimental
observations, if the quadratic nonlinearities are considered of the same order as that of the cubic,
they do not appear in the first-order approximation of the perturbation solution. Hence, in the
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present work, only the cubic nonlinearities are included in the model. The electric enthalpy term is
extended to include fourth-order terms, such as

H ¼ 1
2

c11S
2
1 þ

1
2

c33S
2
3 þ

1
2

cE
44S

2
5 þ c13S1S3 � e31S1E3 � e33S3E3 � e15S5E1 �

1
2
eS
11E

2
1 �

1
2
e33E2

3

þ 1
4

c
ð2Þ
44 S4

5 �
1
3

e
ð1Þ
15 S3

5E1 �
1
2

e
ð2Þ
15 S2

5E
2
1 �

1
3

e
ð3Þ
15 S5E

3
1 �

1
4
eð2Þ11 E4

1: ð31Þ

Here c
ð2Þ
44 is the parameter of the cubic nondissipative elastic term, e

ð1Þ
15 ; e

ð2Þ
15 ; e

ð3Þ
15 are the

higher-order piezoelectric coupling parameters, and eð2Þ11 is the higher-order dielectric parameter.
A comparable energy function is given by Maugin [33]. In addition to these conservative
nonlinear terms, the constitutive relations are also extended by including dissipative linear [34]
and nonlinear terms as

T1 ¼ c11S1 þ c13S3 � e31E3 þ c11d
_ðS1Þ þ c13d

_ðS3Þ � e31d
_ðE3Þ; ð32Þ

T3 ¼ c13S1 þ c33S3 � e33E3 þ c13d
_ðS1Þ þ c33d

_ðS3Þ � e33d
_ðE3Þ; ð33Þ

T5 ¼ cE
44S5 � e15E1 þ c44d

_ðS5Þ � e15d
_ðE1Þ

þ c
ð2Þ
44 S3

5 � e
ð1Þ
15 S2

5E1 � e
ð2Þ
15 S5E

2
1 �

1
3

e
ð3Þ
15 E3

1

þ c
ð2Þ
44d

_
ðS3

5Þ � e
ð1Þ
15d

_
ðS2

5E1Þ � e
ð2Þ
15d

_
ðS5E

2
1Þ �

1
3

e
ð3Þ
15d

_
ðE3

1Þ; ð34Þ

D1 ¼ eS
11E1 þ e15S5 þ e11d

_ðE1Þ þ e15d
_ðS5Þ

þ 1
3

e
ð1Þ
15 S3

5 þ e
ð2Þ
15 S2

5E1 þ e
ð3Þ
15 S5E

2
1 þ eð2Þ11 E3

1

þ 1
3

e
ð1Þ
15d

_
ðS3

5Þ þ e
ð2Þ
15d

_
ðS2

5E1Þ þ e
ð3Þ
15d

_
ðS5E

2
1Þ þ eð2Þ11d

_
ðE3

1Þ; ð35Þ

D3 ¼ e33E3 þ e31S1 þ e33S3 þ e33d
_ðE3Þ þ e31d

_ðS1Þ þ e33d
_ðS3Þ; ð36Þ

where c11d ; c13d ; c33d ; c44d ; e31d ; e33d ; e15d ; e11d ; e33d are linear dissipative parameters,
c
ð2Þ
44d is the parameter of the cubic dissipative mechanical term, eð2Þ11d is the corresponding dielectric
parameter, and e

ð1Þ
15d ; e

ð2Þ
15d ; e

ð3Þ
15d are the higher-order parameters for the dissipative piezoelectric

coupling.
Based on the observations [9] of free piezoceramic vibrations using the d15 effect, here only the

constitutive relations for the T5 and D1 are extended to include the cubic-order terms. It was
observed that the main nonlinearities stem from these two constitutive relations only. Even
though all other constitutive relations can be similarly extended, it is not possible to determine all
the individual parameters uniquely in the present analysis.
3.2. Nonlinear equation of motion

The nonlinear electric enthalpy density from Eq. (31), the kinetic energy from Eq. (12), together
with the dW term obtained from the constitutive relations (32)–(36) are used in Hamilton’s
principle (8), to obtain the nonlinear equation of motion.
As described in Section 2.3, using the Rayleigh–Ritz method, the circular eigenfrequencies

ok ðk ¼ 1; 2; 3; . . .Þ and the corresponding eigenfunctions ðUk;W k;FkÞ can be obtained. Using
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these eigenfunctions, approximate solutions are represented by

uðx1; x3; tÞ ¼
X

k

Ukðx1; x3ÞpkðtÞ; ð37Þ

wðx1; x3; tÞ ¼
X

k

W kðx1;x3ÞpkðtÞ; ð38Þ

jðx1; x3; tÞ ¼
X

k

Fkðx1; x3ÞpkðtÞ þ
U0

h
x1 cos Ot: ð39Þ

Here U0 is the excitation voltage amplitude and O is the circular excitation frequency. The Ritz
method with only one eigenfunction, namely the eigenfunction close to the excitation frequency, is
used for the discretization by von Wagner and Hagedorn [35] in a piezo-beam system. For
comparison, the calculations with up to four shape functions were performed considering full
nonlinear coupling. The results showed good agreement, with the eigenfunctions of the linearized
problem used as shape functions. Keeping this in mind, the following simplified solutions are used
in Ritz method for the discretization:

uðx1;x3; tÞ ¼ Ukðx1; x3ÞpkðtÞ; ð40Þ

wðx1;x3; tÞ ¼ W kðx1; x3ÞpkðtÞ; ð41Þ

jðx1;x3; tÞ ¼ Fkðx1;x3ÞpkðtÞ þ
U0

h
x1 cos Ot ð42Þ

for the system excited close to the kth resonance frequency.
Introducing Eqs. (40)–(42) in Hamilton’s principle leads to the discretized nonlinear equation of

motion for the piezoceramic beam as

mk €pk þ dk _pk þ c
ð1Þ
k pk þ c

ð2Þ
k p3

k þ c
ð2Þ
kd p2k _pk

¼ f
ð1Þ
k cos Ot � f

ð1Þ
kdO sin Ot þ f

ð2Þ
k cos Otp2k þ 2f

ð2Þ
kd cos Otpk _pk

� f
ð2Þ
kdO sin Otp2k þ f

ð3Þ
k cos2Otpk þ f

ð3Þ
kd cos

2Ot _pk � 2f
ð3Þ
kdO cos Ot sin Otpk

þ f
ð4Þ
k cos3Ot � 3f

ð4Þ
kdO cos2Ot sin Ot ð43Þ

with

mk ¼ r
Z

A

U2
k þ W 2

k

� �
dA;

dk ¼

Z
A

c11dU2
k;1 þ c33dW 2

k;3 þ 2c13dUk;1W k;3 þ 2e31dUk;1Fk;3 þ 2e33dW k;3Fk;3 � e33dF2
k;3

�
þc44dðUk;3 þ W k;1Þ

2
þ 2e15dðUk;3 þ W k;1ÞFk;1 � e11dF2

k;1

�
dA;

c
ð1Þ
k ¼

Z
A

c11U
2
k;1 þ c33W

2
k;3 þ 2c13Uk;1W k;3 þ 2e31Uk;1Fk;3 þ 2e33W k;3Fk;3 � e33F2

k;3

�
þcE

44ðUk;3 þ W k;1Þ
2
þ 2e15ðUk;3 þ W k;1ÞFk;1 � eS

11F
2
k;1

�
dA;
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c
ð2Þ
k ¼

Z
A

c
ð2Þ
44 ðUk;3 þ W k;1Þ

4
þ 4

3
e
ð1Þ
15 ðUk;3 þ W k;1Þ

3Fk;1

�
�2e

ð2Þ
15 ðUk;3 þ W k;1Þ

2F2
k;1 þ

4
3

e
ð3Þ
15 ðUk;3 þ W k;1ÞF3

k;1 � eð2Þ11F
4
k;1

�
dA;

c
ð2Þ
kd ¼

Z
A

3c
ð2Þ
44dðUk;3 þ W k;1Þ

4
þ 4e

ð1Þ
15dðUk;3 þ W k;1Þ

3Fk;1

�
�6e

ð2Þ
15dðUk;3 þ W k;1Þ

2F2
k;1 þ 4e

ð3Þ
15dðUk;3 þ W k;1ÞF3

k;1 � 3eð2Þ11dF
4
k;1

�
dA;

f
ð1Þ
k ¼

U0

h

Z
A

�e15ðUk;3 þ W k;1Þ þ eS
11Fk;1

� �
dA;

f
ð1Þ
kd ¼

U0

h

Z
A

ð�e15dðUk;3 þ W k;1Þ þ e11dFk;1ÞdA;

f
ð2Þ
k ¼

U0

h

Z
A

�e
ð1Þ
15 ðUk;3 þ W k;1Þ

3
þ 3e

ð2Þ
15 ðUk;3 þ W k;1Þ

2Fk;1

�
�3e

ð3Þ
15 ðUk;3 þ W k;1ÞF2

k;1 þ 3eð2Þ11F
3
k;1

�
dA;

f
ð2Þ
kd ¼

U0

h

Z
A

�e
ð1Þ
15dðUk;3 þ W k;1Þ

3
þ 3e

ð2Þ
15dðUk;3 þ W k;1Þ

2Fk;1

�
�3e

ð3Þ
15dðUk;3 þ W k;1ÞF2

k;1 þ 3eð2Þ11dF
3
k;1

�
dA;

f
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U2
0

h2

Z
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e
ð2Þ
15 ðUk;3 þ W k;1Þ

2
� 2e

ð3Þ
15 ðUk;3 þ W k;1ÞFk;1 þ 3eð2Þ11F

2
k;1

� �
dA;

f
ð3Þ
kd ¼

U2
0

h2

Z
A

e
ð2Þ
15d ðUk;3 þ W k;1Þ

2
� 2e

ð3Þ
15d ðUk;3 þ W k;1ÞFk;1 þ 3eð2Þ11dF

2
k;1

� �
dA;

f
ð4Þ
k ¼

U3
0

h3

Z
A

�1
3

e
ð3Þ
15 ðUk;3 þ W k;1Þ þ eð2Þ11Fk;1

� �
dA;

f
ð4Þ
kd ¼

U3
0

h3

Z
A

�1
3

e
ð3Þ
15dðUk;3 þ W k;1Þ þ eð2Þ11dFk;1

� �
dA: ð44Þ

3.3. Solution by perturbation analysis

An approximate solution of the nonlinear equation of motion (43) is obtained using
perturbation analysis. For the perturbation analysis, we define a nondimensional time

t ¼ o0t with o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c
ð1Þ
k =mk

q
; (45)

as well as the frequency ratio

Z ¼
O
o0

: (46)
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Using Eqs. (45) and (46), the equation of motion (43) can be expressed as

p00 þ e k p0 þ p þ e a1 p3 þ e a1d p2 p0

¼ e q ðh1 cos Ztþ h2 sin ZtÞ þ e qd Zð�h2 cos Ztþ h1 sin ZtÞ þ e a2 p2 ðh1 cos Ztþ h2 sin ZtÞ

þ 2 e a2d p p0 ðh1 cos Ztþ h2 sin ZtÞ � e a2d p2 Z ð�h2 cos Ztþ h1 sin ZtÞ

þ e2 a3 p ðh1 cos Ztþ h2 sin ZtÞ2 þ e2 a3d p0 ðh1 cos Ztþ h2 sin ZtÞ2

� 2 e2 a3d p Zðh1 cos Ztþ h2 sin ZtÞð�h2 cos Ztþ h1 sin ZtÞ þ e3 a4 ðh1 cos Ztþ h2 sin ZtÞ3

� 3 e3 a4d Z ðh1 cos Ztþ h2 sin ZtÞ2ð�h2 cos Ztþ h1 sin ZtÞ ð47Þ

with

ð Þ
0
¼

d

dt
; k ¼

dk

emko0
; q ¼

f
ð1Þ
k

emko2
0

; qd ¼
�f

ð1Þ
kd

emko0
;

a1 ¼
c
ð2Þ
k

emko2
0

; a1d ¼
c
ð2Þ
kd

emko0
;

a2 ¼
f
ð2Þ
k

emko2
0

; a2d ¼
f
ð2Þ
kd

emko0
; a3 ¼

f
ð3Þ
k

e2mko2
0

; a3d ¼
f
ð3Þ
kd

e2mko0
;

a4 ¼
f
ð4Þ
k

e3mko2
0

; a4d ¼
f
ð4Þ
kd

e3mko0
:

Here the coefficients h1 and h2 are introduced to allow for a phase shift between the excitation and
the response of the system. The parameter e can be chosen arbitrarily, but has to be small. Now,
the Lindstedt–Poincaré method is used with

p ¼ p0 þ ep1 þ � � � ; Z ¼ 1þ eZ1 þ � � � : (48)

Introducing Eq. (48) into Eq. (47) for the zeroth order results in

p000 þ Z2p0 ¼ 0; (49)

and for the first order in

p001 þ Z2p1 ¼ � kp0
0 þ 2Z1p0 � a1p30 � a1dp20p

0
0

þ qðh1 cos Ztþ h2 sin ZtÞ þ qdZð�h2 cos Ztþ h1 sin ZtÞ

þ a2p20ðh1 cos Ztþ h2 sin ZtÞ þ 2a2dp0p
0
0ðh1 cos Ztþ h2 sin ZtÞ

� a2dp20Zð�h2 cos Ztþ h1 sin ZtÞ: ð50Þ

The solution of Eq. (49) is given by

p0 ¼ P cos Zt (51)
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with unknown amplitude P: Using Eq. (51) in Eq. (50), the condition of vanishing secular terms
leads to

2Z1P � 3
4
a1P3 þ ðq þ 3

4
a2P2Þh1 þ ð�qd þ

1
4
a2dP2ÞZh2 ¼ 0; ð52Þ

kZP þ 1
4
a1dZP3 þ ðqd � 3

4
a2dP2ÞZh1 þ ðq þ 1

4
a2P2Þh2 ¼ 0: ð53Þ

These two algebraic equations, along with the condition h2
1 þ h2

2 ¼ 1; yield a polynomial equation
of fifth order in terms of P2

a5P
10 þ a4P

8 þ a3P
6 þ a2P

4 þ a1P
2 þ a0 ¼ 0; (54)

which can be solved using Matlab
s: The roots of this polynomial provide values of the

amplitude.

3.4. Calculation of the electric current

To get further information about the behavior of the piezoceramic, the electric current in the
piezoceramic is measured with the help of a resistance in series. In the model, the electric current
at one electrode is given by

IðtÞ ¼
dQ

dt
¼ �

d

dt

Z
F

D1 dF ; (55)

where F is the area of an electrode. Using the constitutive equation (35), the amplitude of the
electric current can be calculated if the displacement response including the amplitude and the
phase shift are known. This is done symbolically using the Matlab

s 6.5 Symbolic toolbox.
4. Experimental setup

The experiments are carried out using cantilever piezoceramic beams of length l ¼ 18mm;
width b ¼ 14mm and of two different thicknesses: h ¼ 8; 3mm: The piezoceramic beams are
excited close to the first flexural resonance, by a computer-controlled gain-phase analyzer
(Hewlett-Packard HP 4194A). The gain-phase analyzer applies a frequency sweep and
simultaneously records the gain. The excitation signals from the gain-phase analyzer are
amplified by the power amplifier (Brüel and Kjaer 2713), before being fed to the piezoceramic. A
digital oscilloscope (Yokogawa DL708E) is used to monitor the excitation voltage amplitude and
responses. The vibrations of the piezoceramic are measured with the help of a laser vibrometer
(Polytec). The laser vibrometer has two units (viz. optic unit and electronic unit). The optic unit
(OFV508) supplies the laser signals, and simultaneously senses the reflected signal. The reflected
signals are then processed by the electronic unit (OFV2802), and fed to the test channel of the gain
phase analyzer. The output of the power amplifier is also fed to the reference channel of the gain-
phase analyzer to measure the gain.
In order to measure the current flowing through the piezoceramic at different excitation

frequencies, the standard method described in Ikeda [34] (constant voltage method) is used. A
low-value resistance (shunt of r ¼ 0:5O) is placed in series with the piezoceramic. The laser
vibrometer circuit is then disconnected, and the voltage signals from the shunt are fed to the test
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channel of the gain-phase analyzer. The voltage at this shunt is very small compared to the
excitation voltage and does not influence the applied voltage. Several shunts with different
resistance values were also used and no significant influence on the current measurement was
observed. All the shunts used were having resistance values several orders smaller than the
impedance of the piezoceramic at resonance frequency as recommended in Ikeda [34] (i.e.
jZj=rX100). The experimental setup for the same is shown in Fig. 7.
5. Parameter identification and experimental verification

In the present work, piezoceramic cantilever beams of the material PIC 255 supplied by PI
Ceramic, Lederhose, Germany are used. The linear and nonlinear parameters are obtained for the
piezoceramics by fitting the experimental and model results. The fminsearch command of
Matlab

s 6.5 (based on Nelder–Mead simplex search method) is used to find here the optimized
values of various parameters.

5.1. Linear parameters

In the first step, the linear parameters are identified by fitting the normalized displacement
amplitude curve and the normalized current amplitude curve for the approximate linear behavior
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at U0 ¼ 2V: The linear identified parameters along with the approximate parameters supplied by
the manufacturer are shown in Table 2. All the identified parameters are close to the
manufacturer-supplied values, except for the parameter eS

11; which has around 50% variation. A
small variation of 10% can also be observed between some of the identified parameters for
h ¼ 8mm and h ¼ 3mm: According to the manufacturer, the samples with different thicknesses
may have been produced from different charges of raw material, which could explain for this
variation.
It can be observed from the expression of the linear damping dk in Eq. (44) that it is linearly

dependent on nine material parameters. Therefore, various combinations of these parameters are
possible to obtain the same results. To demonstrate this, for the piezoceramics with h ¼ 8mm; the
dissipative mechanical and dielectric parameters are optimized, and dissipative piezoelectric
coupling terms are assumed as zero. The resulting parameters are given in Table 3. Fig. 8 shows
the theoretical and experimental normalized displacement responses uðh=2; l=2Þ=U0; at 2V
excitation voltage and at the first resonance. Fig. 9 shows the normalized current responses for the
same. It can be observed from these two figures that, with the identified linear parameters, the
theoretical response is in good agreement with the experimental results. At low voltage excitation
the current measured in the piezoceramic is of very small magnitude. Hence, for the normalized
current response some noise is observed in the measured data due to the instrument noise.
However, the theoretical response matches fairly well with measured data along the whole
frequency range. At higher voltage excitation the current measured in the piezoceramic is of
relatively large magnitude than that of instrument noise. Hence, the noise disappears.
Table 2

Linear material parameters

Manufacturer’s values 18� 14� 8mm3 18� 14� 3mm3

r ðkg=m3Þ 7800 7800 7800

cE
11 ðN=m2Þ 1:108� 1011 1:084� 1011 1:092� 1011

cE
12 ðN=m2Þ 6:326� 1010 6:326� 1010 6:326� 1010

cE
13 ðN=m2Þ 6:896� 1010 7:162� 1010 6:980� 1010

cE
33 ðN=m2Þ 1:108� 1011 1:084� 1011 1:092� 1011

cE
44 ðN=m2Þ 1:909� 1010 1:909� 1010 1:909� 1010

e31 ðN=mVÞ �5:6 �5:6 �5:6
e33 ðN=mVÞ 12:8 12:8 12:8
e15 ðN=mVÞ 10:3 9:8 8:02

eS
33=e0 1161 1161 1161

eS
11=e0 1023 1582 1653

Table 3

Linear damping parameters, h ¼ 8mm

c11d ðNs=m2Þ c13d ðNs=m2Þ c33d ðNs=m2Þ c44d ðNs=m2Þ e33d ðNs=V2Þ e11d ðNs=V2Þ

6000 �9000 290 5800 �1:0� 10�14 �1:0� 10�14
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Fig. 8. Normalized displacement response for the beam with h ¼ 8mm at various excitation voltages (electric field

strengths): — theory 2V (0.25V/mm); ��� experiment 2V (0.25V/mm); � � � � � theory 25V (3.125V/mm); � � � � ��

experiment 25V (3.125V/mm).
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For the piezoceramic with h ¼ 3mm; the dissipative dielectric parameters are assumed as zero
and the elastic and piezoelectric dissipative parameters are optimized. Table 4 displays the
identified parameters. From Fig. 10 for the normalized displacement response and Fig. 11 for the
normalized current response, it is evident that identified parameters can simulate the experimental
results at low voltage values.

5.2. Nonlinear parameters

To identify the nonlinear parameters, experimental results at 25V are compared with the
model. The term c

ð2Þ
k in the nonlinear equation of motion can give rise to the observed softening

nonlinear behavior in the experiments. It was shown in Ref. [36] that the term with combined
parametric excitation and nonlinearity f

ð2Þ
k can produce the decrease of the normalized amplitude.

Both the terms are rewritten here as

c
ð2Þ
k ¼

Z
A

c
ð2Þ
44 ðUk;3 þ W k;1Þ

4
þ 4

3
e
ð1Þ
15 ðUk;3 þ W k;1Þ

3Fk;1

�
�2e

ð2Þ
15 ðUk;3 þ W k;1Þ

2F2
k;1 þ

4
3
e
ð3Þ
15 ðUk;3 þ W k;1ÞF3

k;1 � eð2Þ11F
4
k;1

�
dA;

f
ð2Þ
k ¼

U0

h

Z
A

�e
ð1Þ
15 ðUk;3 þ W k;1Þ

3
þ 3e

ð2Þ
15 ðUk;3 þ W k;1Þ

2Fk;1

�
�3e

ð3Þ
15 ðUk;3 þ W k;1ÞF2

k;1 þ 3eð2Þ11F
3
k;1

�
dA:

It can be seen from these expressions that f
ð2Þ
k is linearly dependent on the four higher-order cubic

parameters, which also appear in the expression of c
ð2Þ
k : The term c

ð2Þ
k additionally depends on the
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Fig. 9. Normalized current response for the beam with h ¼ 8mm at various excitation voltages (electric field strengths):

— theory 2V (0.25V/mm); � � � � �� experiment 2V (0.25V/mm); � � � � � theory 25V (3.125V/mm); ��� experiment

25V (3.125V/mm).

Table 4

Linear damping parameters, h ¼ 3mm

c11d ðNs=m2Þ c13d ðNs=m2Þ c33d ðNs=m2Þ c44d ðNs=m2Þ e31d ðNs/mVÞ e33d ðNs/mVÞ

6000 �9000 290 5800 �8:8� 10�4 �1:0� 10�4
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higher-order elastic parameter c
ð2Þ
44 : Clearly, it is not possible to determine all the five cubic

parameters uniquely. Similarly, the terms c
ð2Þ
kd and f

ð2Þ
kd responsible for nonlinear damping are

linearly dependent on five higher-order dissipative parameters.
It is shown by Parashar et al. [9] that, choosing only one parameter each from the dissipative

and conservative higher-order terms, it is possible to simulate the experimental results. However,
choosing only the piezoelectric coupling parameter will not be thermodynamically consistent
[6,32]. It is observed by von Wagner and Hagedorn [35] for the piezo-beam systems that there is
nonlinear elastic behavior in those piezoceramics. Keeping this in mind, for the piezoceramic with
h ¼ 8mm; conservative nonlinear parameters c

ð2Þ
44 ; e

ð2Þ
11 and dissipative nonlinear parameters

c
ð2Þ
44d ; e

ð2Þ
11d are optimized. For the piezoceramic with h ¼ 3mm, a different set consisting the

conservative nonlinear parameters c
ð2Þ
44 ; e

ð1Þ
15 and dissipative nonlinear parameters c

ð2Þ
44d ; e

ð1Þ
15d is taken.

The optimized parameters are shown in Tables 5 and 6. Using identified linear and nonlinear
parameters, the results of the theoretical model are compared with the experimental results at
25V. Figs. 8 and 9 for h ¼ 8mm; and Figs. 10 and 11 for h ¼ 3mm show a good agreement
between the experiments and theoretical model.
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Fig. 10. Normalized displacement response for the beam with h ¼ 3mm at various excitation voltages (electric field

strengths): — theory 2V (0.666V/mm); ��� experiment 2V (0.666V/mm); � � � � � theory 25V (8.333V/mm);

� � � � �� experiment 25V (8.333V/mm).
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Fig. 11. Normalized current response for the beam with h ¼ 3mm at various excitation voltages (electric field

strengths): — theory 5V (1.666V/mm); � � � � �� experiment 5V (1.666V/mm); ��� theory 25V (8.333V/mm); � � � �

� experiment 25V (8.333V/mm).
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It is worth mentioning here that the Eq. (54) given in Section 3.3 and used for computing
displacement amplitude will have five real solutions in general. For the parameters used in the
present case, there will only be three real solutions. The intermediate solution from these three
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Table 5

Nonlinear material parameters, h ¼ 8mm

c
ð2Þ
44 ðN=m2Þ c

ð2Þ
44d ðNs=m2Þ eð2Þ11 ðN=V2Þ eð2Þ11d ðNs=V2Þ

�5:8� 1018 4:4� 1013 �5:0� 10�19 �1:1� 10�24

Table 6

Nonlinear material parameters, h ¼ 3mm

c
ð2Þ
44 ðN=m2Þ c

ð2Þ
44d ðNs=m2Þ e

ð1Þ
15 ðN/mVÞ e

ð1Þ
15d ðNs/mVÞ

�1:6� 1020 2:3� 1015 �1:5� 1010 7:5� 102

S.K. Parashar et al. / Journal of Sound and Vibration 285 (2005) 989–10141010
solutions is known to be unstable and cannot be observed in the experiments [37]. The remaining
two solutions provide the sweep-up and sweep-down amplitudes. However, in the present case,
due to the high damping of the piezoceramic material PIC 255 the jump phenomenon is not visible
as observed in the case of PIC 181 material [6–8] and both the solutions coincide.
6. Summary and conclusions

Typical nonlinear effects were observed in the experiments conducted with piezoceramic
cantilever beams subjected to weak electric fields. These nonlinear effects indicate a softening
behavior, and the reduction of normalized amplitudes with increase in the excitation voltage.
To model such a nonlinear behavior, first a reduced set of linear constitutive relations is used.

Eigenvalues and eigenfunctions of the beam were determined using the Rayleigh–Ritz method.
The methodology proposed by Bhat [26], to use the characteristic orthogonal polynomials in the
Rayleigh–Ritz method, was here extended to a piezoelectric continuum. A convergence study was
carried out to observe the convergence behavior of the used polynomials. The mode shapes for the
first four flexural eigenfrequencies were plotted. It was observed that for the present case the
assumptions of neither the Euler–Bernoulli beam theory nor the Timoshenko beam theory hold at
higher modes. The electric potential distribution at first four flexural modes was also studied. A
sinusoidal distribution of the electric potential along the thickness and more general distribution
along the length of the beam were noticed at all the mode shapes. For relatively thin beams, a
modified Timoshenko beam theory, which takes care of the above-mentioned electric potential
distribution, is suggested, and its detailed comparison with the present work will be the subject of
a future publication.
For nonlinear modeling, the electric enthalpy term was extended to include the cubic

nonlinearities. Similarly, the constitutive relations were extended to include the dissipative and
nondissipative cubic order terms. During modeling of the longitudinal vibration of transversally
polarized piezoceramics in Refs. [6,32], it was observed that quadratic terms did not appear in the
first-order approximation in the perturbation solution. To force the quadratic term to appear in
the first-order approximation, they had to be assumed to be of a higher order than cubic, which
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was against the experimental observation. However, they also observed that the cubic
terms alone can give rise to the nonlinear behavior, as observed in the experimental
results. Hence, in the present case the nonlinear constitutive terms were restricted to only the
cubic terms. Based on the observations in Ref. [9] of free piezoceramic vibrations using
the d15 effect, only the constitutive relations for T5 and D1 were extended to include the
cubic-order terms.
Hamilton’s principle was used to obtain the nonlinear equation of motion of the piezoceramic

beam. Linear eigenfunctions were used as shape functions in the Ritz method to discretize the
nonlinear equation of motion. Perturbation methods were used to solve approximately the
nonlinear equation of motion. A good coincidence between the experimental and the theoretical
results was observed for the identified parameters of the piezoceramic. It was observed that, using
different small subsets of parameters, it was possible to match the theoretical response curves with
the experimental results.
The nonlinear effects observed in the present paper are not negligible. Therefore, they should be

taken into account in the design of the devices, such as ultrasonic motors and torsional actuators,
utilizing the d15 effect near resonance frequency excitation.
Appendix A. Polynomial functions

The starting functions for U and W are

b0ðx1Þ ¼ d0ðx1Þ ¼ constant; g0ðx3Þ ¼ z0ðx3Þ ¼ constant� ðx3 þ l=2Þ; (A.1)

while the starting functions for f satisfying the electric boundary conditions are

y0ðx1Þ ¼ constant� ð1� 4x2
1=h2

Þ; f0ðx3Þ ¼ constant: (A.2)

The higher-order functions are obtained using the Gram–Schmidt process [26] as follows:

b1ðx1Þ ¼ ðx1 � Q1Þb0ðx1Þ; biðx1Þ ¼ ðx1 � QiÞbi�1ðx1Þ � Ribi�2ðx1Þ (A.3)

and

Qi ¼

R h=2
�h=2 x1sðx1Þb

2
i�1ðx1Þdx1R h=2

�h=2 sðx1Þb
2
i�1ðx1Þdx1

; (A.4)

Ri ¼

R h=2
�h=2 x1sðx1Þbi�1ðx1Þbi�2ðx1Þdx1R h=2

�h=2 sðx1Þb
2
i�2ðx1Þdx1

: (A.5)

sðx1Þ is the weighting function, and unity in the present case. In case of gjðx3Þ; znðx3Þ;fsðx3Þ the
interval is from �l=2 to l=2: Matlab

s 6.5 Symbolic toolbox is used in the present work to obtain
the higher-order polynomials.



ARTICLE IN PRESS

S.K. Parashar et al. / Journal of Sound and Vibration 285 (2005) 989–10141012
Appendix B. Expression for maximum kinetic and potential energies

Using Eqs. (20) and (21), the maximum kinetic energy can be written as

Tmax ¼
1
2
rbo2

Z
A

ðfAgTfG1gfG1g
TfAg þ fBgTfG2gfG2g

TfBgÞdA (B.1)

and using Eqs. (19), (21) and (22), the maximum potential energy can be written as

Hmax ¼
1
2

b

Z
A

c11fAgTfG1;1gfG1;1g
TfAg þ c33fBg

TfG2;3gfG2;3g
TfBg þ cE

44fAgTfG1;3gfG1;3g
TfAg

�
þ cE

44fBg
TfG2;1gfG2;1g

TfBg þ 2c13fAgTfG1;1gfG2;3g
TfBg þ 2e31fAgTfG1;1gfG3;3g

TfCg

þ 2e33fBg
TfG2;3gfG3;3g

TfCg þ 2e15fAgTfG1;3gfG3;1g
TfCg þ 2e15fBg

TfG2;1gfG3;1g
TfCg

þ2cE
44fAgTfG1;3gfG2;1g

TfBg � eS
11fCg

TfG3;1gfG3;1g
TfCg � e33fCgTfG3;3gfG3;3g

TfCg
�
dA: ðB:2Þ
Appendix C. Elements of the matrices

½Kmech� ¼
c11fG1;1gfG1;1g

T þ cE
44fG1;3gfG1;3g

T c13fG1;1gfG2;3g
T þ cE

44fG1;3gfG2;1g
T

c13fG2;3gfG1;1g
T þ cE

44fG2;1gfG1;3g
T c33fG2;3gfG2;3g

T þ cE
44fG2;1gfG2;1g

T

" #
; (C.1)

½Kpiezo� ¼
e31fG1;1gfG3;3g

T þ e15fG1;3gfG3;1g
T

e33fG2;3gfG3;3g
T þ e15fG2;1gfG3;1g

T

" #
; (C.2)

½Kdielectric� ¼ �eS
11fG3;1gfG3;1g

T � e33fG3;3gfG3;3g
T

# $
: (C.3)
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